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Abstract

The adaptation of homogenization theory to periodic plates is presented and extended to include transverse shear
deformation theory for a honeycomb sandwich. Based on the scaling asymptotic expansions about plate thickness J for
sandwiches with comparable characteristic periodicity ¢, the homogenization functions I1, U, and V' are formulated
implicitly in 3-D elliptical equations corresponding to the modes of transverse shear, in-plane stretch and out-plane
bending. The solutions of these periodic functions are analytically obtained through a multi-pass homogenization
technique that includes the first pass of a geometry-to-material transformation model and the second pass of 2-D unit
cell homogenization. The derivation not only leads to analytical formulas of homogenized (To distinguish the ho-
mogenization between micro-scale and meso-scale, the term ‘homogenized’ or ‘equivalent’ is hereby used in meso-scale,
corresponding to the term ‘effective’ for micro-scale.) elastic stiffness of honeycomb sandwiches, but also demonstrates
the significance of usually neglected skin effect on honeycomb computations. Finally, a periodic unit cell finite element
modeling technique is developed to validate the analytical approach and further complement it with skin rigidity
considered. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A typical honeycomb sandwich panel consists of two thin and stiff facing materials bonded to a thick and
lightweight thin-walled core with in-plane two-dimension periodic cellular structure. The characteristic of
three-layer arrangement, intuitively, leads to classical sandwich theory (e.g., Allen, 1969; Plantema, 1966;
Zenkert, 1995), a beginning and a branch of present laminate theory. The computational models on
honeycomb sandwiches, as reviewed by Noor et al. (1996), are generally based on the equivalent re-
placement of honeycomb cores with homogeneous continuum due to expensive computations of 3-D de-
tailed finite element analysis (FEA). Obviously the reliability of continuum modeling is critically dependent
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on the accuracy of equivalent core properties. And today the concern is further strengthened by research
interests on more detailed local fields such as impact delamination, dynamic failure, and various local
buckling modes. The application of laminate theory on meso-cell honeycomb sandwich panels, however,
has been found not so successful as on micro-cell composite laminates. The difficulty is first encountered by
the acquisition of homogenized properties of honeycomb sandwiches, as so far the discussions have still
been open on 3-D derivations and, no less importantly, on how to fit them into the frameworks of existing
computational models. One common example is the appropriate determination of mechanical properties
for brick elements as core equivalence in the static, dynamic and thermal FEA of sandwich panels, which
remains a problem in honeycomb continuum modeling, e.g., as assessed by Burton and Noor (1997).

Conventional hexagonal honeycomb sandwiches have been widely applied in aerospace industry since
1940s. With the development of composite materials and manufacturing technology, the application of this
efficient structure has been penetrating into every possible field. Circumstantially honeycomb sandwiches
can be optimized from geometry to material in both global and local levels. Among them, one important
choice is of honeycomb cores, where the size, shape, topology and wall thickness of core configuration and
constituent materials can be comprehensively optimized by taking account of local interactions and con-
sequent global behaviors.

The natural efficiency of cellular structures has thus attracted many investigations (e.g., Gibson and
Ashby, 1988; Warren and Kraynik, 1987; Fortes and Ashby, 1999) on periodic and disordered cells,
wherein the book of Gibson and Ashby (1988) is the first systematic literature in the field. Of the funda-
mental equivalent elastic properties, the in-plane elastic properties of honeycomb were first obtained with
the standard beam theory (Gibson and Ashby, 1988; Masters and Evans, 1996). Further refinements, e.g.,
as introduced by Masters and Evans (1996), have been attempted considering stretching and hinging effects
and the extension to finer scale of molecular modeling. It must be pointed out that all these mathematical
models on honeycomb cores are built based on pure cellular structures, and the usual presence of
strengthening skin faces has not been taken into account. In classical sandwich theory (Allen, 1969), the
global skin—core interaction is identified as the result of the anti-plane core assumption. Since the con-
straints of two skin faces significantly alter local deformation mechanism of a heterogeneous core, the
homogenized core stiffness properties become sensitive to the ratio of core thickness to unit cell size, which
is called skin effect in this paper or thickness effect by Becker (1998). The practice of neglecting skin effect is
prevalent in today’s sandwich research and design, wherein the equivalent core properties are simply taken
from those formulas based on pure cellular models. Besides other unscrupulous uses causing erroneous
Poisson’s ratios and singularities, this neglect yields underestimate of stiffness and subsequent inconsis-
tencies between modeling and reality, although only few of them were noticed in experiments (e.g., the
study by Cunningham and White, 2001). A common example is the anti-plane core assumption in sandwich
beam analysis, where skin effect and edge effect of anti-clastic bending have been too simply ignored. As
observed in experiments (e.g., Adams and Maheri, 1993; Daniel and Abot, 2000), skin constraints were
demonstrated by the phenomenon of skin lateral contraction and expansion.

The skin effect, induced by high gradient of material change between two skin faces and a heterogencous
core, can be analogous to heterogeneous multi-phase interactions in micromechanics of composites. The
homogenization theory, well applied in 3-D micro-scale periodic composite materials, has been adapted
into heterogeneous plate and shell theory since the 1970s (Duvaut, 1977; Caillerie, 1984). The theoretical
efforts made in obtaining plate equivalent properties are highly dependent on the simplifications given by
the constraint assumptions of a corresponding plate theory, i.e., Kirchhoff, Reissner-Hencky or Reddy
plate theories (Lewinski, 1991). And the approximations are processed based on the ratio of plate’s
two small parameters, i.e., characteristic thickness ¢ and characteristic periodicity &. When 6/¢ ~ 0, such
as lattice plate, the plate assumption of unit cell results in simple analytical formulas (Lewinski, 1991;
Caillerie, 1984). When 6/¢ > 1, as in the case of fiber composite laminates, the equivalent stiffness prop-
erties of laminates are derived from the micromechanics between fiber and matrix in each individual sub-
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layers, such as classical laminate plate theory (CLPT) resulting from the plane stress assumption. In the
case of 0/e ~ 1, the asymptotic expansion method or I'-convergence technique generates the Caillerie—
Kohn—Vogelius plate model, which is difficult to apply analytically (Lewinski, 1991). Hence honeycomb
sandwiches, fallen into the domain of §/¢ ~ 1, have been conventionally treated by laminate theory, where
a honeycomb core is firstly homogenized into a continuum equivalent layer separately, and then the skin—
core interactions are modeled with CLPT or higher order laminate theories. Clearly even with higher order
terms, the conventional approach fails to realize the heterogeneity of cores and the consequent high gra-
dient of through-thickness mechanical variables.

In conventional sandwich analysis, the three-layer sandwich theory requires equivalent properties of a
pure core, which should be accountable for real skin—core interactions in both global and local sense, i.e.,
the interactions must be energetically equivalent prior to and posterior to the homogenization of the core.
There have been many refined theories and finite elements proposed to overcome the complicated inter-
action problem. In this paper, a straightforward approach is proposed to homogenize a unit cell including
both skin faces and core, by which skin effect can not only be accounted for locally but also be assessed
precisely. A homogenized single-layer plate model then can be constructed with the properties derived
based on shear deformable plate theory. Further, with this approach the sandwich local behaviors can be
accurately predicted by using inverse or unsmearing procedure, which is expected as an important ad-
vantage over any conventional refined theories. One example is of the local stability problem, where the
critical wrinkling load is strongly dependent on the in-plane stiffness (Vonach and Rammerstorfer, 1998).
The diagram of comparison between conventional and proposed approaches is shown in Figs. 1 and 2.
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Fig. 1. Diagram of two approaches for honeycomb sandwich analysis. (a) Conventional approach and (b) new approach.
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Fig. 2. Comparison of two approaches for honeycomb sandwich analysis.
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2. Literature review

The phenomenon of honeycomb skin effect was first assessed by Kelsey et al. (1958), and the equivalent
transverse shear stiffness of hexagonal honeycomb core was investigated. The skin effect on the transverse
shear deformation was theoretically expressed by two bounds of derived equivalent shear stiffness, whereas
the lower and upper bounds correspond to zero and infinite large skin effect, respectively. Later Penzien and
Didriksson (1964) improved Kelsey’s upper bound (UB) by formulating a closer displacement field than
Kelsey’s uniform field, and the solution consistently showed the trend of the diminishing skin effect with the
increase of core thickness ratio 6/¢. More recently, Shi and Tong (1995a) applied 2-D homogenization
technique to obtain Kelsey’s lower bound (LB) value, and Xu et al. (2001) extended it to general honey-
comb configurations. Numerical approaches on transverse shear stiffness were attempted by Shi and Tong
(1995a) and Grediac (1993). Shi and Tong (1995a) used a specialized hybrid element; however the results
are found neither consistent with Penzien and Didriksson’s (1964) conclusion nor with Saint—Venant
theorem explained by Grediac (1993). In the study by Grediac (1993), the applied unit cell boundary
conditions actually correspond to those of the analytical approximations of Penzien and Didriksson (1964);
thus the results only numerically verify latter’s work without providing better accuracies.

Unlike the evaluations of equivalent shear stiffness of honeycomb cores, the skin effect on other stiffness
tensors has received less attention. Both Parton and Kudryavtsev (1993) and Shi and Tong (1995b) solved
the honeycomb equivalent in-plane stiffness by two-scale method; however, the skin effect was not con-
sidered in their studies. Through an energy minimization implementation, Becker (1998) for the first time
assessed the skin effect on equivalent in-plane moduli. A further expansion was attempted recently by Hohe
and Becker (2001) to include all elastic tensors and general honeycomb cores with but quite implicit lengthy
calculations. For a sandwich panel, the very important concern is the flexural stiffness contributed from
a honeycomb core. Among few existing references, only Parton and Kudryavtsev (1993) gave a formula
for flexural stiffness of honeycomb cores, which is simply derived from in-plane stretch stiffness and does
not include skin effect. In this paper, to the authors’ knowledge, flexural stiffness is first time distinguished
from stretch stiffness, since the displacement field varies when loading is changed from symmetry to anti-
symmetry about the panel middle plane.

There are several engineering investigations (Chamis et al., 1988; Takano et al., 1995; Bourgeois et al.,
1998; Vougiouka and Guedes, 1998; Meraghni et al., 1999) on the homogenization of honeycomb sand-
wiches; however they are case limited without further insight. Besides addressing the aforementioned un-
solved issues, this paper is aimed to develop an effective approach to homogenize general honeycomb cells
and to provide a comprehensive approach in three aspects—the mathematical statement of sandwich ho-
mogenization theory, analytical solution of a multi-pass homogenization (MPH) technique, and a 3-D unit
cell FEA homogenization technique.

The MPH technique originates from the conception that the homogenization of an object can be pro-
cessed by its principal axes one by one, i.e., the homogenized results obtained along one axis can be well
applied to the next pass along another axis. In this paper, the MPH technique includes a two-pass pro-
cedure to homogenize 3-D geometrical heterogeneous honeycomb media in orthogonal directions. The first
pass involves the building of a geometry-to-material transformation model (GTM), by which the com-
plicated 3-D spatial analysis is simplified into a 2-D plane stress or plane strain case. The first pass, i.c., the
GTM, is mathematically equivalent to the coordinates transformation in combination with energetic av-
eraging. The coordinates transformation has been conventionally applied by all the relevant research ref-
erenced in this paper, and the process however is inconvenient and lengthy. The MPH technique and
sandwich homogenization formulation developed here can efficiently simplify the process and be applicable
for all general sandwich structures with periodic cores. In the second pass, with the resulting intermediate
core equivalent properties, the appropriate displacement field is constructed by satisfying field equations
either exactly or weakly. With the homogenization formulation given in Section 3, or with energy mini-
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mization theorem, the homogenized stiffness can be analytically solved in the form of Fourier series. In
Section 5, the FEA numerical results verify the semi-analytical solutions, which further complementally
show the influence of skin rigidity. A specialized FE modeling technique is developed at the end of this
paper for the appropriate imposing of periodic boundary conditions in unit cell FEA modeling. This
technique can be easily used in commercial FEA programs without writing specialized code for hybrid
elements, and the principle of which is extendable to all periodic media of unit cell FEA.

3. Formulation of honeycomb homogenization problem
3.1. Asymptotic expansions about plate thickness

The asymptotic expansion for plates with d/¢ ~ 1 was first given by Caillerie (1984). Hereby the ex-
pansion is repeated, and the notations are made consistent with the derivation of Kirchhoff-Love plate
model by Parton and Kudryavtsev (1993), where small Latin indices denote 1, 2, 3 and small Greek indices
for 1, 2. To extend the homogenized plate model to transverse shear deformation theory, the formulation of
homogenized transverse shear stiffness is attempted in Section 3.2.

For common honeycomb sandwiches (see Fig. 3) of which the body force is ignored, the 3-D elasticity
field equations and boundary conditions can be written as

60',-/-

0, inQ
u; =u;, onodQ
gin; = T}, on @29
where
Oij = Cijki€kl
1 auk aul (2)
=3 (a_ * a)
And the coefficient c;;; should satisfy the elliptical symmetry condition

Cijki = Cjikl = Cijik = Cklij

Fig. 3. A body of honeycomb sandwich structure.
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A dimensionless small parameter, d, characterizes the ratio of the plate thickness to the plate global size, L,
and hereby the local coordinates of the unit cell are introduced to rescale the problem

X1 X2 X3
=7 < =T == 3
N o N2 hy0 z 5 (3)

where h characterizes the ratio of the unit cell size to the plate thickness which ensures the rescaled unit cell
domain in {—1/2 < y;, 1,z < 1/2}.
With the two-scale expansion method about the small parameter o, the series are expressed as

EC) = uiO)(x) + 5”1(1)()6’}}72) +e

e§;> = ef(,”(x,y, z)+ 5e§]¥>(x,yvz) 4+ (4)

65;) = aij(-))(x,y,z) + 5afj¥>(x,y,z) +o

where the strain—displacement law is
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=" (5)
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8(11/3 _ 2 u, + B
2 6x[; Gxa
c 1) _ 6u(3[)
o3 axa
[=0,1,2,...

and the constitutive equations are

o) =cel) 1=0,1,2,... (6)

i

The external traction T is assumed only being applied in the transverse direction, which can be written as
function of ¢ by

T (x) = 0’ (x,p) (7)

By matching the expansion terms, the boundary traction conditions are known

=0, 1=0,1,2
+
(8)

()

(3)
013

=0
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1
3

:07 0.(3) — +z
33 4l g (

x,¥)

z= z:i%

Note the variables with superscript / > 0 are all Y-periodic in y. Substituting (4)—(6) into (1) and matching
the power order of J result
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With the substitution of (4)—(6) into (9) and the consideration of the boundary conditions in (8), the fol-
lowing can be derived as detailed by Parton and Kudryavtsev (1993)

10
4D _ W (10
o o axa
oV =0

ij
from which the displacements can be expressed by global in-plane and flexural variables as

. ow , .
ug:) = 51);1)()6') - X3 a + 52U;”8le) + 52 I/xll\ K/(g) —+ .. (11)
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0 _ o*w
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Note in Parton and Kudryavtsev (1993), the transverse shear deformation is ignored, whilst in this paper
the additional term 5%7;2) (x) in (11) is obtained by modification of equation (19.51) of Parton and Ku-
dryavtsev (1993) as follows:

u(32> (x,y,2) = vasf}‘,) + V;‘“:cﬁf? + ﬁgz) (x) (13)

In the above equations, the commonly called homogenization functions U(y,z) and V(y,z) are the local
periodic displacements induced by in-plane strain &) and flexural curvature (), respectively, which should
satisfy the local equilibrium equations

1 * 0
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and uniqueness conditions

(Ur), =0, atz=0

(", =0, atz=0

we henceforth denote averaging operators (x) = fsz,, x dy; dy» dz, (x), = [y xdydy,

3.2. Homogenized transverse shear plate model

To take into account the transverse shear deformation, instead of (16), the uniqueness conditions are
redefined as

(capUs’) =0

” (17)
(cap Vi) =0
By applying the averaging process to (9) for / = 2 with Green—Gauss theorem, it gives
Ao
o =0 18
o T q(x) (18)
q(x) = / g (x,y)dy (19)
Y
Assume material properties are monoclinic in that c,3 = c,333 = 0. Using (5) and (6), we have
oul? (x, y,2) a1 oud)
(2) — 3 Vs p - 3 20
0-301 030(3,3( axﬁ aZ +hﬁ ayﬁ ( )
Let
" oy (21)
3 2
“z( )= H?Vgﬁ)

where II is the local periodic displacement function induced by the transverse shear. Define equivalent
transverse shear stiffness (C,343) by

(o)) = <ng,;3>y(3? (22)
Then by (13), (17), (20)—(22) and for 6;(11\) even about z, C,3p3 can be written as

oI’ L oIt}
aZ l’l;. ay,

Caaps = Caaps + €33 ( (23)

Thus (15) and (22) give all the stiffness required for transverse shear deformation theory of plates. And the
stress and moment resultants can be written as

N“ﬁ = 62<C0<ﬁll">8(1) + 52<C;ﬂ;u>’<((i)

v u

Maﬁ = 53 <Zco<ﬂu">8;(41v) + 53 <ch(ﬂ[l\‘>’c(0) (24)

o, v

0, =& <Cx3[i3>y(3?{>
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For transversely symmetric honeycomb sandwiches, clearly in-plane and flexural couple disappears, i.c.,
<zCa,;w,> = <C;ﬁm,> = 0. From (11), the global strain variables are correspondingly given by

2

Y3p = 5272/;)

& = 58}}3 (25)
0

Ky = KL

Further for symbolic consistence with CLPT and by (24) and (25), the plate macroscopic equivalent stiffness
may be finally expressed as

Nog = Argntwr  Ang = 3 Coppar)
My = DZ)’;LVKW’ Dfﬁ;w =0’ <ZC:ﬂw> (26)
O, = Hpprsg,  Hpg = 0(Cupa)

or more clearly for sandwich panels with three planes of symmetry

Nu Ay A 0 &1l
Ny | = |4y An 0 &
| Nss 0 0 Adss]| | s (27)
[ M Dy D 0 K11 0 H 0 .
44 44

My | =1|Dy Dy O K»n |, [ } = [ } [ 44]

Oss 0 Hss]Lvss
| Mes 0 0 Des | | 66

where contracted notation is introduced with aoff = aff, 2323 = 3232 =44, 1313 = 3131 =55, and
1212 = 2121 = 66.

3.3. Field equations of three local problems

From (15) and (23), the homogenized stiffness can be obtained once the solutions of the homogenization
functions U(y,z), V(y,z) and II(y,z) are known. These periodic functions then have to be solved by the
local elastic equilibrium equations as given in (9), combined with unit cell periodic boundary conditions. It
should be noted that in all the following equations, the material properties [c] are function of spatial co-
ordinate, and assumed monoclinic in that c,g;3 = cy333 = 0.

3.3.1. Transverse shear local problem I1(y,z)
Assume a pure shear case that ¢ = k = 0. Combining (9), (20) and (21), the equilibrium equations become

12 N alYﬁJr 1 ot .9 1 aH/f+ oIt} 0
h, ay“ Cu3p3 T Co3p3 Oz h Gy,l oz C3301 7 h, 6 C3333 —~ oz =

B B 8 (28)
1 0 oy 1 o117’ L0 N omy  1oms |
h a Cou33 oz coc;w\h a a Co3p3 Cu3i3 oz h/L ayi -

From (5), the boundary conditions are specified as
1 oI’ ort’
C3mh B S+ C3333 P =0 z=z
(29)

N anﬂ+ 1 oI1} 0 .
Cu3p3 T Cu373 0 h, 6y, z=2z
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3.3.2. In-plane (stretch and shear) local problem U(y,z)
Assume a pure in-plane case that y = x = 0. (9) and (15) lead to

1 9 ous 1 Uy 0 1 oU* ouy?
7 Ci3v3 ?+hj o + = C331/3+C33w1h7 5 + 3333 =0

Oz v Oz
, (30)
Lo (.. aU‘ﬁH 1 oU* Lo, augﬁJrLaU}“/‘ 0
h a vuof vu33 oz ‘HU/Lh‘. ayﬂ oz v3w3 oz h(,) 6_)/@
The boundary conditions are
1 oU ouy’
C334p + €3304 — ——— + C3333 =0 z=7*
h;l 6y,1 Oz
of (31)
. Uk n 1 oUs" ) 0 s
e\ oz Th, Oy ) T
3.3.3. Flexural local problem V(y,z)
Similarly, the equilibrium equations and boundary conditions are given as
Lo, aV;ﬂ+1aV;” N 1 oy . or? 0
7 A V. Y~ e - ~ | Z2C33¢ VA7 A =
I, o w3\ T T o 3z \ 23 T C3nn g o 335
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1 oyt oy’
ZC330p + C3301 7~ + e —— =0 z=z"
h; ayi 0z
off (33)
(LN
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4. Analytical approach—multi-pass homogenization technique

In engineering applications of homogenization theory, the exact analytical solutions are seldom ob-
tainable and the approximations are usually made either by semi-analytical method or by pure numerical
techniques such as finite element method. In the problem of honeycomb cells, there are 3-D local functions
(see Eqgs. (28)—(33)) physically interpreted as complicated combination of local warping, stretching,
bending, shearing, and twisting, etc. The exact mathematical expression for each of the functions is almost
impossible to derive analytically. As demonstrated in (24), fortunately, weak solutions are sufficient when
the homogenized properties are sought in a variational sense.

For even a weak solution of the local problem as (28)—(33), their 3-D deformations are difficult to deal
with, and the direct construction of cell plates’ displacement (Hohe and Becker, 2001) involves relatively
complicated and implicit numerical process. Hereby in the first pass of the MPH, a simplified GTM is
proposed that a spatial heterogeneous problem can be transferred into a material heterogeneous problem
with consequent intermediate equivalent properties. By this way, the strain energy of cell walls can be
completely expressed by the resulting intermediate equivalent stiffness without omitting small higher order
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terms, as exemplified by @; and @, in Egs. (65) and (70) of Section 4.2.2. Note in the GTM there is no
restriction about the thickness of cell walls, as long as energy equivalence is satisfied with appropriate
derivations of intermediate equivalent stiffness. In the second pass, the 2-D heterogeneous problem then can
be analytically homogenized in a unit cell by the variational approximations of displacement field with
Rayleigh—Ritz method or partition method, etc. The weak form solution of the partial differential equations
is finally verified with the FEA results in Section 5.

The MPH technique originates from the idea that the homogenization of an object may be processed by
its principal axes one by one, i.e., the homogenized results obtained along one axis can be well applied to
the second pass along another axis. There are several engineering applications of the MPH technique, (e.g.,
Astley et al., 1997). The separation of the process is found very effective in the homogenization of hon-
eycomb cells, as evidenced in this paper. To illustrate the whole process explicitly, a better way is to follow
an analytical example as given in Section 4, rather than general procedure description. Hereby the most
used hexagonal honeycomb is taken as an example (Figs. 4 and 5), which has been given the most attention
in honeycomb studies with much available theoretical and experimental data.

Skin Faces

Fig. 5. GTM—first pass of MPH technique.
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4.1. First pass—geometry-to-material transformation model

In principle by the GTM, a doubly periodic sandwich panel is transformed into a 1-D periodic panel.
For hexagons shown in Fig. 5, the plate thus becomes consisting of two alternative thin sandwich beams
with their intermediate equivalent material properties. In the first pass the GTM homogenization is made
along, say x,, so that the information of spatial periodicity along x, is stored in the consequent intermediate
equivalent stiffness. The resulting 2-D heterogeneous composite then can be conveniently assessed in the
second pass along x;.

For simplicity, the cell walls and skin faces are assumed both made of isotropic materials, where Young’s
modulus, shear modulus and Poisson’s ratio are denoted E., G., v. and E, Gy, v, respectively. Geometrical
notations of the hexagon are illustrated in Fig. 4. It should be pointed out that for anisotropic materials the
procedure is kept identical. The example is confined to transversely symmetric sandwiches with thin-walled
hexagonal core to which the thin beam model (Gibson and Ashby, 1988) can be applied.

With the above assumptions, the faces of the two thin sandwich beams are known homogeneous so that
structural homogenization only needs to be processed on two types of beam cores, I and IT (Fig. 5). The
intermediate equivalent properties may be obtained following the principle of structural mechanics, and the
derivation refers to similar problems detailed in Gibson and Ashby (1988) and Masters and Evans (1996).
The properties of core II consisting of parallel cell walls are

I ¢ It
he2 2 he2 he2 2
=——F, E) =0, =———F

' 2sin0 b 2  2sin6 b

3
ot ola. apao gipo bTest byl Y
2sin6 b (a/b)*(1 + 2a/b)sin0 \ b

VI Vi (), Vit =i =y, Vil Vi & 0

And the properties of core I with folded cell walls are

. cos 0 fny?
= 2 2 (Z) E.
sin” O[1 + c2g?0(t,/b)7]
in 0 hy? 1 t
Ehcl — sin s . Ehcl - “ ;
cos? 0[1 + 1g20(t, /)] (b) 3 sinfcos0 b ¢

t t . t
Gl = ctgf)ZIGc, Gl = tg@iGc, Gls' = sin 0 cos HEIEC
1 _ g 1= (0/b) 1 _ g 1= (0/b) (33)

vis = ctg 0 , =
B e20(1 /b) 2 1+ @0(/b)
39 t 2
Vil = y.cos 6, yhel — cos L)y,
. B sin? 01 4 ctg20(t, /b)?] ( b )
. 3
0 >
Vil =y, sin 0, Vil = s )
2 2 cos2 0[1 + 1g20(1, /b’ ( b )

where the superscript / denotes intermediate core equivalent properties, and ¢, 1, 2 for core and its type I,
11, respectively.

Note that calculation of in-plane Poisson’s ratios, with such equations as (4.13-14) in Gibson and Ashby
(1988), would result in-plane stiffness much deviated from true values, and even produce singularities. The
correct way is to further consider the stretch deformation, as noticed by Warren and Kraynik (1987) and
Masters and Evans (1996). The formulas of Poisson’s ratios in (35) are derivable from (4.50) in Gibson and
Ashby (1988).
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The generalized Hooke’s law for the above hexagons with three planes of the elastic symmetry can be
written in terms of the intermediate properties of principal elastic constants (Lekhnitskii, 1968)

) h
VR T S R
1= g 01T g %2 703 V23 = Gt 3
1 2 3 23
h h
v 1 A 1
ho_ 12 i h 32 _h ho_ h
32*‘?“1*@“2‘?“37 V13*Gh T13 (36)
1 2 3 13
h h
\ 1% 1 1
h 13 _h 23 _h h h h
gh=—Lol_Bsly g T =T
3 E' 1 El 2 ' 3 12 Gl 12

And the inverse of (36) results in the expression of stress variables

Eh

| = 1 _IA [(1 - Vg3"1312)5111 + (v + VZ3V§1)83 + (Vgl + "gl"gz)gg’]a 723 = Gg3"/g3
Eh

ag =1 —ZA [(1 - V}113"§1)SZ + (V?z + V?ﬂgz)g}f + ("22 + "}1!2"];1)32'], 7]113 = Gi'ﬂ?,% (37)
Eh

7y = 1 —3A [(1 — Vi )es + (Vi + Vi vis)el + (Vs + V}fz"gﬁ‘gﬂa 1, = GiyYh

ok h bk b Bk ok Bk
A = vV F Vi3V F Va3va, VsV F Vi vV,

4.2. Second pass—2-D unit cell homogenization

After the cores I and II are homogenized in x, as done in the first pass, a 3-D local problem is thus
simplified into a 2-D problem as shown in Fig. 6. There are three regions, i.e., core I, core II, and two skin
faces III, forming a three-phase homogenization problem with governing equations (28)—(33). The material
properties of the regions I and II are orthotropic and the region III isotropic, which henceforth are ex-
pressed by engineering constants, Young’s modulus E, shear modulus G, and Poisson’s ratio v. Note for
sandwich panels the following analyses in plane y;—z are of plane-strain deformations.

7"2/2 r; r2/2
< > <€ >€E——>

Vi

I1 I

I —

Fig. 6. Second pass of MPH technique.
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4.2.1. Homogenized transverse shear stiffness

Denote the core thickness as ¢, the period of honeycomb as /, = a + bcos 0 (Fig. 4), and define the ratio
r=bcos0/ly, r»=a/ly,0 <r,r, <l,r +r, =1 Here h for hexagons equals /y/c. From (28) and (37)
with ¢ = 0, the field equations for the regions I and II may be given as

aZn[V] 1 aZnM Ehcoz 1 aZHM 1 62 HM
tha 1 - 3 1 heo heo hea 3 _ yhea hea 1 _
13 ( 02 +h1 00z + 1_ A1 (V31" + Va1 vay )hl a0z ( V3r Vo3 )h% )
S

heo heo hea
(V13 + iy Vo3 )

o[ 1O 1 @I B
B\ oondz B o 1— 4"

217l
LI R
h1 ayléz 0z2

A1 = VS 4 4 VT
where o = 1 or 2 denotes the region I or II, respectively.

The left and right boundary conditions for the regions I and II are the continuity and the periodicity
conditions for both stress and displacement fields. The top and bottom boundary conditions are the in-
teractions between core and skin faces, which are complicatedly involved with faces internal fields. To
simplify them, the approximation is made that faces are assumed infinite rigid, as those of Kelsey et al.
(1958) and Penzien and Didriksson (1964), by which Hg“] becomes zero at top and bottom interfaces.
Among all admissible displacement fields satisfying above conditions, the following one in Fourier series is
given, based on the symmetric material and the anti-symmetric loading about the panel middle plane

1
m'=0
. , 1
H[;] = Zay] sinh M”hl (yl —§>] cos(nnz), mn=1,3,5...
. " (39)
a7 =0
H[;] = ZaLZ] sinh(22hyyy) cos(nmz), n=1,3,5...
Substituting (39) into the second equation of (38) results in eigenvalues
00— . [T Vi)
: a1 4"
(40)
: @1 - 47)
And the first equation of (38) is satisfied by variational partition method in a weak form since
1/2 10
Z / / cosh {iy]hl (yl ——)} sin(nnz)dy;dz=0, n=1,3,5...
T Jn Jan 2 (41

12
Z / / cosh()f]hlyl) sin(nnz)dydz=0, n=1,3,5...
n pal -

1/2
To find the coefficients a,, we impose displacement continuity conditions between the region I and II

n' =0 aty =n)2 (42)
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and the equilibrium condition of shear stress

1 o 1 or?
a1 5 ) = (14 ) wnen “

Note the continuity condition of normal stress is satisfied variationally by (41). With the conditions (42)
and (43), the coefficients are obtained

4(Gi — G?) sinh (;J”hl 1)

(1 _—
a,’ =
nn[ — G'27 cosh (i,[f]hl %) sinh (in hT) + G M cosh ()“ ) smh( 1%‘)}
(44)
o 4Gl - Glg') sinh (2 hT)
! nn[ — G/ cosh <iLz]h1 %) sinh (i 1’2) + G'512M cosh (} m) sinh (i,[f]hl ’7‘)}
From (23), (26), (27) and (37), the homogenized transverse shear stiffness is expressed
Hg = C<C1313> = CG%
where
r/2  pl/2 1 oIl 12 p1/2 1 aHl]
GH:2/ / G 1+— dzdy, +2 / G +— dzd 45
. 0 e h a)/l . np Jop hy Oy n (45)
And the integration of (45) results
n—1
GH _ Z 4(_1) 2 thlr + thzl" +a thl sinh (r_lh /'{[1]) [1 thZ inh (r_Zh )[2])
13 — L I127'C2 1371 1312 a, 13 hl 2 14y 13 h 2 14y
(46)

The above formula (46) can be easily calculated with a symbolic mathematical program, such as Math-
ematica or Maple. Hereby the numerical results are given in Table 1 for two configurations of hexagons as
function of core thickness ratio 4;.

For regular hexagons with #, = 2t, a = b, 0 = 60°, the ratio of r, = 2/3, and the isotropic material with
Poisson’s ratio of 0.3, the intermediate equivalent properties of the regions I and II are obtained from (34)
and (35)

Table 1
Normalized homogenized transverse shear stiffness G /GlS!
mh LB 1/100 1720 1/10 1/8 1/6 1/5 1/4 1/3 1/2 1 2 10 UB

rn=2/3 1.500 1.500 1.504 1.508 1.510 1.514 1517 1.521 1.529 1.543  1.580 1.618 1.656 1.666
(1.544) (1.584)
rn=0536 1366 1366 1370 1374 1377 1381 1384 1.388 1.395 1410 1448 1486 1.525 1.536

Note: the numbers based on FEA are given in parentheses.
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. . P
EFl =526, Gl = =G

~V3b
E?=52GY,  GI¥ =26
Ll it R )
1—4?
_ yhel jhel
T2V 0571 for 2 <001
1 — AW b

Further consider a group of irregular hexagons with #, = 2¢, a = b, = 30° and the ratio of r, = 0.536. The
properties of the regions I and II are the same as (47), wherein noticed that the value of 1 — vis!vis! /1 — Al
does not change. The results of two groups are shown in Table 1 and graphically in Figs. 7 and 8.

Remarks

(a) The variational principle leads to the LB and UB of shear stiffness as derived first by Kelsey et al.
(1958), and later by Gibson and Ashby (1988) and Shi and Tong (1995a). With the simple application of

1.68

1.66
1.64
1.62
S 1.60 A
"o
O 1584
ES)
G 156 4
1.54
1.52
1.50 A
1.48 T T T T
0.01 0.1 1 10
h1
Fig. 7. Transverse shear stiffness G, with r, =2/3.
1.56
wsad
1.52 A
1.50 A — IUB
rrrrrrrr LB
- 1.48 A —_—_ UuB
g"}
g“ 1.46
T
© 144 4
®
1.42 4
1.40 4
1.38
1.36 A
1.34 T T T T
0.01 0.1 1 10

Fig. 8. Transverse shear stiffness G, with r, = 0.536.
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Reuss Model and Voigt Model for the 2-D unit cell in Fig. 6, respectively, the formulas for UB and LB can
be written as

G{Is UB rlGillgl + rZGillgz

13 - -
B Gl +nG

Note the two bounds are not functions of 4;. The substitution of (34), (35) into (48) leads to the formulas of
LB and UB as function of geometrical parameters

Gl 2t1bcos? 0 + ta
B31UB = 2pbsinO(a + bcosl) ¢

AT bcosO+a ’

BILB " psin0(b/t; + 2a/ty) ¢

which are identical to those formulas given in the literature (Kelsey, 1958; Gibson and Ashby, 1988; etc.).

(b) Penzien and Didriksson (1964) gave a similar result as (46); however its assumption of infinite
Young’s modulus in yj-axis is not right, which is corrected in this study by the GTM and the weak form
solution. Further we should point out that the semi-analytical approximation in Section 4.2.1 gives an
improved upper bound (IUB) since skin faces are assumed infinite rigid. As shown in Figs. 7 and 8§, the I[UB
value converges to the two bounds when #; — 0 or oo, which confirms the solution.

The FEA results in Section 5 have two cases (4, = 1 and 1/2) illogically a little higher than TUB values, as
modified in Table 1. The reason is attributed to the inconsistency between the IUB displacement field (39)
and FEA modeling on the rigid assumption of skin—core joints. This influence, however, is quite small, and
therefore, IUB approximation of (46) is recommended as an effective formula that can be further combined
with Eq. (91) for design and optimization. For common hexagons with 4; < 1, the LB value can be con-
servatively used in preliminary design. For refined sandwich analysis, such as FEA modeling, more accurate
shear stiffness is necessary; thus (46) and (91) or unit cell FEA approach can be useful.

(c) When skin effect is not taken into account (i.e., there is no normal constraint at the top and bottom
boundaries), with continuity conditions (42) and (43) the exact solution of (38) may be simply expressed as

1
]1( }ilgz }llgl)

(49)

(1]
Il = ———5——>-" + constant

YT

2 (50)
" =0

h (thl _ thZ)

2 1

H[}] _ 13 13l i

he2 1 (he
Gl3 + r2 G13

It can be easily checked that the substitution of (50) into (45) results in the identical expression as (49),
which in turn validates the IUB approach.
(d) From the GTM in Section 4.1, the other homogenized transverse shear stiffness G%; can be derived
with parallel model or Reuss model
G = r Gl + rnGi¢ (51)
and the substitution of (34) and (35) into (51) gives
bsin 0 1
Glh=—""—"—@G, 52
3 bcosO+ab (52)

Clearly there is no skin effect for the case of G5;, which can also be intuitively seen from the GTM in Fig. 5.



2170 X.F. Xu, P.Z. Qiao | International Journal of Solids and Structures 39 (2002) 2153-2188

(e) For common honeycomb sandwiches, the thickness of skin faces is small in relation to that of core,
whilst the shear modulus of the former is much higher. Owning to this fact, the equivalent shear stiffness of
the sandwiches is overwhelmingly determined by core properties. To further take the thickness of skin faces
t; into account, the unit width transverse shear stiffness of a sandwich panel can be written as per Allen
(1969)

(t + )

Hss = G

(tf + C)z

Hyy = G,

4.2.2. Homogenized in-plane stretch stiffness
The governing field equations and the boundary conditions are the same as (38) and those of Section
4.2.1

62 UM 1 62 UM Ehcoc 1 62 UM 1 62 U[“]
thot 1 4+ — 3 + 1 vhcoc + vhcocvhcoc - 3 +(1— vhcocvhcoc o 1 =0
13 ( 02 hl ayl Oz 1— AM ( 31 21 "32 )hl aylaz ( 32 723 )h% ay12
heo i 62 Ul[“] i 62 U:EQ‘] E/31606 (vhczx 4 vhcotvhcac) i 62 UIM ( _ vh(‘zxvhca) 62 U,“Ez] =0 (54)
B\ ndz B o ) oA | TR a0z =

lo] __ < jhco heo heo heo heo | hea heo heo . heo heo heo heo
AT = Vig v VSV vt VTS VT

Due to the loading condition, the solution approximation is made in reverse to the case in Section 4.2.1, i.e.,

in this case the displacement is ensured to satisfy governing equations strictly in y; and weakly in z. By the
doubly symmetry of material and loading, the displacement field is constructed as

. 1
Ul = Zb,[ﬂ sinh M”hl <y1 —§>] cos(nnz), n=1,35...

U3[l] = Zc,, sin(nnz), n=1,3,5...
! (55)

U3[2] = ch sin(nnz), n=1,3,5...

The substitution of (55) into the first equation of (54) leads to eigenvalues

Gt (1 - )
B (1= V) -
L R Gl — A[Z])

" B )

Note in (55) that there are three unknown coefficients, and the second equation of (54) cannot be simply
satisfied by partition method in weak form as (41). An effective approach is to follow the Rayleigh-Ritz
Method that is convenient to treat orthonormal series. The quadratic energy functional of (54) is given by
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I(U)=0s+ 0, +0:

2 2
12 pn/2 1 6U 1 aUD] 12 172 4 aU[l 1 aU“]
5:2/ / Gl =+ -2 | d dz+2/ G S — =2 | dyidz
Q -1/2 13 Oz hl ayl )1 —-1/2 JIn)2 2 Oz h] 6y1 N

o2/, / ()K)
o] () w1 L e
af L e (35 o e

where Oy, 0,, and Q. denote strain energy in shear, y;-normal, and z-normal, respectively.
The three equations for three unknown coefficients are the displacement continuity condition between
regions I and II

UH U[Z] atyI:r2/2 (58)

and the differentiation of functional /(U) about any two unknowns, say two b,

az(”U) (59)

by
The substitution of (55) and (57) into (58) and (59) solves the three coefficients, where the symbolic cal-
culation can be conveniently carried out by Mathematica or Maple. The results for the coefficients b, and ¢,

are omitted here due to their lengthy symbolic expressions.
From (15), (26), (27) and (37), the homogenized in-plane stretch stiffness is given as

A{_Il = C<C1111> = CE{II

where
/2 p1)2 Ehcz 1 aU2] aU
=2 (LD 1 T )+ O3 i) 5 fdza
-1/2 1- 1 V1
12 r1/2 Ehcl 1 auly oull
+2/ / vhclvhcl 1+ e U 4 hel _|_vhclvhcl 3 dZd 60
n2 Jo1p 1 — 140 55 hi oy (i1 21 zz) Vi (60)
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And the integration of (60) results

1
hel hel hel 2b," o (1] Ay 4 hel yhel
c(Vi) i) + { e sinh(4, ' 1Y) — = | (1 — vighvash) il

n+3/2
Eﬁ:ZZ(—1)+/ 1 — A mE|

he2 | he2 he W 2 4 he2 - he2
(V37 i v) + [ o sinh (4,7 52) — 5 | (1 = vi5ves)

e RnE Y n=135... (61)

+

Let all the geometrical properties be the same as those of Section 4.2.1 with r, = 2/3, then the intermediate
equivalent properties expressed by E<* are
2t

Eth — Ec
1 \/gb
e 1 C. C. 1 C. (62
Gl = g3Et Gl =g omt® )
1— 4% =091
and the corresponding terms in (61) are expressed in unit of E/* as
t
ZI 0.1 0.05 0.025 0.01
1 — yhelyhelyphel
% 0.135833 0.133059 0.132365 0.132171
hel hel | hel Ehcl
(v3i —FIVZ';ﬁ]z) ! 0.122376  0.122700 0.122781 0.122804 (63)
1 — hel y hel Ehcl
% 2.114191 2.114153 2.114144 2.114144
hel hel | hel Ehc'l
05 tvz‘;ﬁ]z) 3 0.122376  0.122700 0.122781 0.122804

The substitution of (62) and (63) into (61) results the homogenized stretch stiffness in terms of thickness
ratio Ay, and the numerical data are given in Table 2 and shown in Fig. 9.

Remarks

(a) After Becker’s (1998) investigation of thickness effect on honeycomb in-plane stiffness, there was no
further attention on skin effect on honeycomb sandwich computations. Most of today’s sandwich compu-
tations follow three-layer theories, where equivalent core properties are obtained without skin effect con-
sidered, with existing values corresponding to the LB solution, either implicitly in FEA modeling or
explicitly in formulas. As shown in Fig. 10, this may result in stretch stiffness underestimated by about 3-25%

Table 2
Normalized homogenized in-plane stretch stiffness E7, /E"? with r, = 2/3
h LB 1/100 1/20 1/10 1/8 1/6 1/5 1/4 1/3 12 1 2 10 100 10000 UB

t/b=0.1 0.302 0.310 0.313 0.318 0.320 0.324 0.327 0.331 0.340 0.355 0.400 0.484 0.674 0.725 0.732  0.898
t/b=0.05 0.302 0.304 0.308 0.313 0.315 0.319 0.322 0.324 0.334 0.349 0.496 0481 0.672 0.725 0.730  0.896
4/b=10.025 0.302 0.302 0.307 0.311 0.314 0.317 0.321 0.325 0.333 0.348 0.395 0.481 0.672 0.724 0.730 0.896
f/b=0.01 0302 0.302 0.306 0.311 0.313 0.317 0.320 0.325 0.333 0.348 0.394 0.480 0.672 0.724 0.730  0.896
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Fig. 9. Stretch stiffness Ef} with #; /b = 0.05.
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Fig. 10. Underestimation in stretch stiffness E%.
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when A is increased from 0.1 to 1.0, the range of common honeycomb applications. It is also found
that the cell wall thickness ratio # /b has little influence on skin effect, particularly when this ratio is less
than 0.05.

(b) By applying Reuss model and Voigt model in this case, the formulas for LB and UB are

hel | hel hel
(1 —vsvis EY

he2 | he2 he2
(1 = v vis )Y

Eilon =n—" S
Bl — ai
- h hel h he2
LB G et 2 A he2 O
1\ ghet = Va1 Fha "\ @ = VoI phea
1 2 1 2

(64)

Note that to be consistent with the stationary variational principle, in (64) Poisson’s effect along z-axis is
considered for UB but not for LB (i.e., & =& =0 and ¢! = ¢% =0 for UB and LB, respectively). The
substitution of (34) and (35) into (64) finally results in
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-+ 2;’7’7' cos* 0@

B |ug = —(t,/2b)E,
s (cosOb/a + l)sm9(2/ )
cosOb/a+ 1)
E{_II|LB = ( bsin 0 (tz/Zb)EC (65)
W—i—sm@
® 1+ 1g20(t1/b)°[1 — sin® 0v2]
1 =

1 —3v2 —1y2cos(40)
where Poisson’s effect is represented by the existence of v..

When regular hexagon is considered with parameters &, = 2¢;, a = b, 0 = 60°, then for small ¢, /b, (65) is
approximated as

V3
Eﬁ|LB z?(tl/b)Ec

V3
E{II ’UB ~ m(tl/b)Ec

which agree with the results of (v/3/5)(z,/b)E. given by Shi and Tong (1995b) and Becker (1998); whereas
the formula of Parton and Kudryavtsev (1993) seems to overestimate stretch stiffness.

The formula (61) is an IUB because the skin faces are assumed infinite rigid. Note the strain is allowed in
three direction so that the derivation is consistent with real situations such as in compression buckling. It
can be seen that, when 4, — 0, the IUB of this study converge to the LB in (65) when cell wall thickness
ratio is not higher than 0.025. The IUB does not converge to the UB of (65) when #; — oo because the UB
formula in (65) assumes zero strain in three direction.

(c) The homogenized in-plane stiffness £% is readily obtainable with the same displacement field (54)

A;’l = C<C2211> = CE;II

(66)

where
ni2 12 phe
e[
121 -4
1/2 1/2 Ehcl
+2 / / .
) 121 —4
By considering E? = 0 in (34), the integration of (67) results

hel | el kel ) ( [1]@) _ ] wel | el kel
g 22(_1)n+3/2c n(V35 vz vy + [ ar Sinh (4,755 7= | (Vi Vs )r e
21 T \E!

n=135,... (68)

hy a}h

P2 e e 16U[2] he2 | e ey [2]
Oy Vs ) [ 1T+ + (V33 + Vi zi dzdy

hi ayl

1 au)! Ul
V?§1+V?§‘V?Z§1)<1+— >+( bt 4 Vi 331) o 1dzdy1 (67)

The eigenvalues and coeflicients in (68) are the same as those of (61).

In converse to the case of Ef}, the formula (68) is an Improved Lower Bound (ILB) with the assumption
of infinite rigid skin faces, which is also noted by Hohe and Becker (2001). The numerical results are
omitted here.

(d) Similar to the case of G%;, from the GTM in Section 4.1, the third homogenized in-plane stiffness £%,
can be easily derived with parallel model or Reuss model by considering &% = 0

5! w2 ey B3
C C.
— + (1 =5y )1 e

H _ hel | hel
Ezz—rl(l_vm "31)1

(69)
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And the substitution of (34) and (35) into (69) finally gives
" sin® 00,

n= m(h/l))&

70
o — 1+ (1/b)’[cscOctg® 0 — v2 cos? Oesc? 0] (70)
a 1312 — L2 cos(40)
For regular hexagons with #, = 2¢;, a = b, § = 60° and small ¢, /b, (70) is approximated as
V3
Ef ~ ——""—(t;/b)E. 71
22 4(1_%‘}3)(1/) ( )

The real value of E% should be under between zero and full Poisson’s effect, i.e., between (v/3/4)(t,/b)E,
and (V3/4(1 —2v2))(t;/b)E.. Compared with (66) it can be found that the stretch stiffness of regular
honeycomb structures becomes a little anisotropic due to skin effect.

(e) The unit width stretch stiffness of a honeycomb sandwich thus can be calculated with

E
A11 = CE{_II +21f—fz
lgvf
A22 = CEgIz + 2tf—fz (72)
1 —v;
E
Ay = CE?I1 + 2t o f2
1 —vf

4.2.3. Homogenized flexural stiffness
Similar to Sections 4.2.1 and 4.2.2, from (32) the governing equations of cylindrical bending are given

below
: 62 VM 1 62 V[“] Ehm
GliuSu 1 + - 3 + 1 .
0z2  hy Oy0z 1 — 4

e i GZVIM +i 62 V3M Eélcot
B\ b opoz R 0y -

lo] _  heo hea heo | heo heo | heo heo heo | heo heo hea, heo
A% =i VIV v VT Vi

62 V3M hco hea 1 anlm
PR

ang[“]] D

0z2

hco heo | hea
(Vi1 +va1v3y)

1
(V5 4+ Vi) o ok (1 = V)

Based on the symmetry of material and loading about z-axis, and the anti-symmetry of loading about
y-axis, the displacement field is constructed as

. 1\] .

yll = % d sinh [/ﬂ,uhl <y1 - 5)} sin(nnz), n=2,4,6...
1

1 c

A =37+ 3 freos(om), 1 =2,4.6..

234 s () i), =246,
1

V3[2] - 5"’113222 + E focos(nnz), n=24,6...

Note that in (74) the first term of V5 expression is added to ensure displacement continuity. As the equi-
librium condition along y;-axis is more important than that along z-axis, (74) is substituted into the first
equation of (73) to obtain eigenvalues
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Gl (1 — )
=0T | —————
TR
(79)
o |G 4)
"R )

The solutions of three unknown coefficients in (74) are just similar to those presented in Section 4.2.2 by the
Rayleigh-Ritz Method. The expression of strain energy is given below, whilst the symbolic calculation and
the expressions of d, and f, are omitted here.

I(V) :Q3+Qy+Qz
2
12 rr/2 1 v 1 ov® 2 12 r1/2 yll 1 opll
= 2/ / hc2 1 i 3 dy, dz + 2/ hcl 1 4+ 3 dv, dz
Q -1/2 13 Oz hy 6)/1 1 ~1/2 Jrn)2 2 aZ h ayl N
12 pn/2 1 Ehc2 an 1 ov? 1 op?
, = 2 hc2 Y hc2 th 1— vhc‘2vh52 - 1 +z - 1 +z|dydz
o /1/2 / 1- 42 03+ 0Oz ( 5 V5) hi on hy on !
2 12 1 E{ld hel hel h 1 aV[l hel | hel 1 aVlm 1 aVvl[l]
+2/ / — | (V3 V5V 1= )| — +z — +z|dydz
il 21 — A (31 + i) oz ( 27253\ ) o h on 1
1/2 /2 1 Eth 1 aV
Qz — 2/ / hc2 4y he2 h(Z - +z|+
L1 ( V13 Vi3 Va3 hl ayl
6V 12 r1/2 Ehcl 1 oyl
[ -+ V’I?V’S?)Z] w2 (vt vl - S+ 2
~1/2 /2 1 1 O

aVS[l hel hel | hel hel | hel aV3[ hel hel | hel
o2 = (V5 Fvig v )z| (1= vap) oz — (V5 + Vi35 )z| dyidz (76)

ar? ,
=~ (7 i)z | (1= vighip?)

+

From (15), (26), (27) and (37), we can have homogenized flexural stiffness as

Dﬁ =c <C7111> 12Eﬁ{

where

/2 Eth
Ef =12 x / /
21—
1/2 1/2 Ehcl
) / / .
npe Jopl—4

1 oy or,
(1 Vi) <z2+ - >+ 082+ i) ]dzdyl

1 on" ol
0 (24 5 ) o 4 2
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The integration of (77) results

in 4
hel hel yhel 2y 1] iy 2(=1)2n hel el
rfu(V3) Va0V ) — [ T sinh (ﬂvn 2 ) + S (T =vshis)

n

ol

Efff =12%x > (1)

4 he2 . he2 2d[2] : 1[2] byr 2(—1 ;r h h
/ Zf;q ( \}g? —|— \)2? \/302 ) — - Slnh A ] 7122 + ( 3 )2 2 (1 - V2631 v3021)
+

hynm

The alternative way is to use the form of energy equivalence (Eji’) =12 x 2 x I(V).
With the hexagon configuration data as before, the numerical results for the flexural stiffness are given in
Table 3 and shown in Fig. 11.

Remarks

(a) In the present study, this is the first attempt where the flexural stiffness is distinguished from the
stretch stiffness, i.e., Ejf' # Ef}. The difference can be as high as 25% for the case #; = 1, as shown in Fig. 12.
It is interesting to note that when #; — 0 or oo, the two stiffness converge to each other.

Most current sandwich computational approaches have questionable approximations in the continuum
modeling of honeycomb core because skin effect has never been taken into account. For regular hexagons
as shown in Fig. 13, the flexural stiffness is 5-40% underestimated when /4, increases from 0.05 to 1.0. The
consequence of the errors has to be evaluated in particular cases; however, it is suggested that all com-
putational modeling use the corrected homogenized properties since the required efforts are minimum.

Table 3
Normalized homogenized flexural stiffness Eji /Et** with r, = 2/3
hy LB 1/10000 1/100 1/20 1/10 1/8 1/6 1/5 1/4 1/3 172 1 2 10 100 10000 UB

t/b=0.1 0.304 0.308 0.310 0.320 0.334 0.340 0.351 0.359 0.371 0.391 0427 0.514 0.608 0.705 0.727 0.730  0.898
t/b=0.05 0302 0.303 0.305 0.315 0.329 0.335 0.346 0.354 0.367 0.386 0.423 0.511 0.606 0.704 0.726 0.729 0.896
t1/b=0.025 0.300 0.301 0.303 0.314 0.327 0.334 0.345 0.353 0.366 0.385 0.422 0.510 0.605 0.704 0.726 0.728  0.896
t/b=0.01 0.300 0.301 0.303 0314 0.327 0.334 0.345 0.353 0.366 0.385 0.422 0.510 0.605 0.704 0.726 0.728  0.896

09y —————————————,——— e —— — — —

0.8 4

0.7

0.6 4

*H
E 1 I/EYhCZ

0.5 1

0.4 4

0.3 4

0.2 T T T T T T T T T
le-4 1e-3 1e-2 1e-1 1e+0  1le+1 1e+2  1e+3  1le+d

h,

Fig. 11. Flexural stiffness £;i with ¢, /b = 0.05.
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Fig. 12. Percentage difference between stretch and flexural stiffness.
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Fig. 13. Underestimation in flexural stiffness E;/.

(b) The formula of the panel unit width cylindrical flexural rigidity is

c? (tf + C‘)sz E;¢ £ E;¢
Dy =—E" L
A T R A T P |
I (tf + C)ztf E; £ E;
D, = —FE#H L 79
R I N G |l - )
3 (lf-l-C)th viEr £ veEp
Dy = —E} £
T L R - Tl Q=

When #, /b increases from 0.01 to 0.1, the hexagon core can have more than 20% contribution in total
flexural rigidity if ¢/#y = 50. The anti-plane assumption thus should be carefully used in computations of
honeycomb sandwiches. By using equivalent anti-plane assumption, core shear stiffness was defined by
Allen (1969) as

" Gis
I (S 0
1 + 6E¢ tr(c+ty)
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It is found that the transverse shear stiffness can be much overestimated by ignoring the core’s flexural
stiffness. This may partially explain the long existing contradiction that shear stiffness obtained from testing
is always larger than theoretical UB, especially for three point bending testing where shear stiffness is highly
sensitive to the accuracy of flexural rigidity.

(c) Following a similar derivation, the flexural stiffness £3/ is given below

53

DHI =c <C§211> leﬁi
where
212 e 1 oy ar?
E*H —12 % / / vhc2 + vthth2 ZZ T 1 + vth + th2 he2 dzd
21 { 1= AP 12 15 V3 ) n on z(v3; 15 V51) 1
12 Eh“ 1 on" aor,!
wf Ot s (2 42 S ) 2t i) O | dzay
r/ 12 1 — 1 O
(81)
and the integration of which results in
[ 1B,
., A+ o) - (B sinh 85 + 2| + o)
E1f12xz —l E"
n=2,46... (82)

since E4? = 0.
For the case of E;;’ , as seen from the GTM in Fig. 5, the only skin effect is due to Poisson’s effect.
Therefore its value is the same as E%, per Eq. (70), i.e.,

By = E5 (83)

5. Periodic unit cell finite element analysis
5.1. Periodic boundary conditions

To verify the variational approach given in the preceding section, the method of unit cell FEA (Xu, 2001)
is used, which is much more effective than actual detailed modeling in terms of computations
and the obviation of size and edge effects. Besides the verification of TUB of semi-analytical solutions in
Section 4, the unit cell FEA can further demonstrate the effect of skin rigidity on the homogenized
properties, by which Egs. (91) and (92) and the correction coefficients which are later shown in Table 7 are
proposed.

The technique of unit cell modeling is on how to impose periodic boundary conditions in both dis-
placement and stress fields; whereas most FEA homogenization problems have to be treated with spe-
cialized hybrid elements. In this study with common elements of commercial FEA program (ANSYS5.5), a
unit cell modeling technique is developed, due to the transverse symmetry of sandwiches.

First the stress function ¥ is introduced by

o’y o*Y o’

=% T BT T (84)
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Fig. 14. Deformation of periodic unit cell in (a) shear, (b) tension and (c) bending.

In Fig. 14, the displacement and stress are continuous with regard to the boundary AB and A'B, i.e.,
1 1 1 1
0'111(—5,2> :U?(E,Z) T?3<—§,Z):T}113(§7Z>
1 1 1 1
o(-37)-2()  o(-39)-9(3)

where @ represents the homogenization function I1, U or V for the mode of shear, tension and bending,
respectively.

(85)

5.1.1. Pure transverse shear mode
In the case of transverse shear mode, clearly there is an anti-symmetric relation between AB and A'B, i.e.,

1 1 1 1
6?(5,2) 6}11<§72) T?3<§,Z> 1?3(5,2)
i ! =—II ! 11 ! =-II !
1 _572 — 44 5’_2 3\ 7 5> — — 443 57_2

From (84)—(86) it is found that (0*¥/0z*)(+1,z2), (0*¥/0y*)(£1,z) and (0°¥/0ydz)(£1,z) are all even
about z. The followings thus can be deduced sequentially,

1 1
a’f(:i:i,z> :U§<i572> =0

(86)

\S}

(87)
h 1 h 1
81(i§72) = 83<j:§,z> =0
By (87) the periodic boundary condition for FEA modeling can be finally defined in the form of
1
H3<:|:§,Z> :H3(O,Z):O (88)

5.1.2. Pure tension and bending mode
With similar deduction, the periodic boundary conditions for tension and bending model are, respec-
tively, given as

Ul(i%,z) = U(0,2) =0 (89)
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and

Iﬁ(i%,z) = 77(0,2) =0 (90)

The deformations of the three modes are illustrated by dashed line in Fig. 14.
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Fig. 15. Unit cell FE modeling.

Table 4
Boundary conditions of periodic unit cell FE modeling
Mode Nodes UX Uy vz ROTX ROTY ROTZ Remark
Transverse A'B'CD/ F F 0 0 0 F sym.
shear ABC'D’
AD/A'D' +4 0 0 F 0 0
BC/B'C -4 0 0 F 0 0
AB/OO'/ F 0 0 0 0 F
A'B’
DOD// F 0 0 F F F add.
co'C
In-plane A'B'CD/ F F 0 0 0 F sym.
tension ABC'D’
AD/BC/AB —A F F F 0 0
A'D/BC/ +4 F F F 0 0
A'B’
Cylindrical A'B'CD/ F F 0 0 0 F sym.
bending ABC'D’
AD +4 F F F 0 =24/ (tr + 9)
BC —A4 F F F 0 —24/(t; + 9)
A'D —A F F F 0 +24/(t + 0)
B'C +4 F F F 0 +24/(t + 0)
AB L F 0 0 0 =24/ (tr + )
A'B L F 0 0 0 +24/(t + 0)

Note: F—free; L—linear.
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5.2. Three-dimensional modeling and results

With the deduction of 2-D periodic boundary conditions in Section 5.1, actual hexagons can be modeled
by extending 2-D conditions to 3-D ones. As shown in Fig. 15, there are two periodic sections 4 BCD and
A'B'C'D', and the displacement constraints are imposed as listed in Table 4. For all three modes, plane
strain globally occurs in x—y plane, i.e., no displacement in z for two lateral cell walls. In the transverse
shear mode, the nodes at the lines DOD'/CO'C’ have zero displacement in UY and UZ due to double
symmetry, which is additionally imposed to ensure the accuracy of the modeling.

SHELL ELEMENT 93 in ANSYS 5.5 is used for the modeling of core walls and skin faces. The re-
finement study indicates that the convergence can be quickly achieved, and the final mesh is illustrated in
Fig. 15 for the case of #; = 1.

5.2.1. Non-linear effect

To the authors’ knowledge, the non-linear effect, mainly due to membrane force of skin faces, is by this
study first time assessed. The assessment is conducted for three modes separately, though not the combi-
nation of them. It is observed that the nonlinear effect becomes more evident with the increased ratio
R, = ttE¢/cE,., and the nonlinear cases are modeled to assess the sensitivity of the ratio R,. As shown in
Table 5, for the case of R, = 5/3 and shear strain up to 1000, the resulting difference of G, is less than
0.08%. Since the ratio R, of practical applications is mostly less than 0.1, the nonlinear effect can be
overlooked particularly in elastic range, and is not considered in this study.

5.2.2. Transverse shear stiffness

It may be reasonable that the effect of skin rigidity can be expressed by the skin rigidity ratio
(tt/c) Er/ |G — G|, and an approximate Eq. (91) is thus developed by interpolating of groups of FEA
results for G}} of regular hexagons, which complements TUB solution of (46),

Table 5
Non-linear effect on G/, /G!

Shear strain (R, = 5/3)

100ue 200pue 350ue 575ue 9251 1000pe
Non-linear 1.5844 1.5844 1.5845 1.5849 1.5845 1.5846
Linear 1.5836 1.5836 1.5836 1.5836 1.5836 1.5836
159
® FEA(h,=1)
184 | o FEA(h,=05)
— Eq.(91)

1.57 4

1.56 4

/G, het

1.55

13

GH

1.54 4

1.53

1.52 4

1.51

0.1 1 10

Fig. 16. Effect of skin rigidity: Eq. (91) vs. FEA.
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t SbEf (91)
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Table 6
G /Gi': Eq. (91) vs. FEA results
R
0.1 0.125 0.25 0.5 1 10
h=1
Eq. O1) 1.527 1.537 1.558 1.569 1.576 1.583
FEA 1.528 1.536 1.556 1.569 1.576 1.584
h =112
Eq. 91) 1.516 1.521 1.531 1.537 1.540 1.543
FEA 1.516 1.520 1.531 1.537 1.540 1.544
h =114
Eq. (91) 1.507 1.509 1.514 1.517 1.519 1.521
FEA 1.506 — - - 1.519 1.521
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Fig. 17. Pure transverse shear mode.
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where GY|,up is calculated by (46), and listed in Table 1. For those hexagons R < 0.1, the G, value can
approximately take the LB value of Eq. (49). Eq. (91) is validated for those of #; < 1, the range of which is
sufficient for general honeycomb sandwiches. Further note for anisotropic skin faces, E; in (91) can be
approximately replaced with Ep;. The closeness of (91) to FEA results is shown in Fig. 16 and Table 6 with
less than 1/750 of difference. The deformations of the unit cell shear are illustrated in Fig. 17.

5.2.3. Tension and flexural stiffness
The formulas (61) and (77) developed in Section 4 for tension and flexural stiffness are based on the
assumption of infinite rigid skin faces, which result in the IUB. In this study, by using FEA, the effect of
skin rigidity can be further assessed and is expressed by two correction coefficients K and K* for tension and
flexural stiffness, respectively.
E = KEY

1111UB
El{[ =K Elfl IUB

The correction coefficients are listed in Table 7 with respect to the ratios of ¢, /b, E¢/E,, and f;/c that cover
most of common sandwiches. It is found that when 4; < 1/8 and 1/4, respectively, the correction coeffi-
cients K and K* can be approximated to be 1.00. For the higher value of %, the correction coefficients in
Table 7 can be used in combination with (61) or (77) to include the rigidity of skin faces. The deformations
of tension and bending are illustrated in Figs. 18 and 19.

Table 7
Correction coefficients K and K*
ll/b Ef/EL- lf/(; K K*
h=1
0.1 1-2 1/12 0.86-0.90 0.93-0.94
1-2 1/6 0.91-0.93
Others 1-2 1/60-1/24 0.86-0.91
0.90-0.93 1-2 1/12-1/6 0.91-0.92
0.94-0.97 h =112
0.1 1 1/24-1/12 0.88-0.91 0.94-0.96
2 1/12-1/6 0.93-0.95 0.97-0.99
Others 1-2 1/24-1/6 0.91-0.92 0.97-0.99
h =11
0.1 1-2 1/48-1/24 0.89-0.91 0.97-1.00
1/12-1/6 0.92-0.94
Others 1 1/120-1/24 0.89-0.91
0.97-0.99 2 1/24-1/6 0.91-0.93
0.99-1.00 =115
0.1 1-2 1/60-1/6 0.91-0.96 ~1.00
Others 1-2 1/120-1/12
h =116
0.1 1-2 1/72-1/6 0.93-0.98
Others 1-2 1/120-1/12
h =118
0.1 and others 1-2 1/120-1/12 0.97-1.00
h =118
0.1 and others 1-2 1/120-1/12 ~1.00

Note: others—¢,; /b = 0.05, 0.025 and 0.01.
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Fig. 18. Pure tension mode.

6. Summary and concluding remarks

In this paper, constitutive modeling of honeycomb sandwiches is developed, and an effective theoretical
approach is proposed to derive elastic stiffness tensors for general honeycomb sandwiches. The usually
neglected skin effect is given particular attention and is found playing an important role in both sandwich
local fields and global behaviors.

First, the adaptation of homogenization theory to periodic plates is introduced and extended to include
transverse shear deformation theory, by which the field equations of three local problems are deduced.
Then a MPH technique is applied to solve the 3-D homogenization functions. With the first pass of the
GTM, the spatial heterogeneity is conveniently transformed into the material anisotropy. In the second
pass, the unit cell is 2-D homogenized by global plane strain, where the solution is analytically sought in
a variational sense. The stiffness tensors are finally formulated in the form of Fourier series that is easily
calculated with a symbolic program. Finally a FEA is conducted to verify and complement the analytical
solutions with the additional assessment on the effect of skin rigidity.

In this study, there are several observations to be concluded as follows:

1. The MPH technique is successfully applied in periodic cellular structures, and the engineering applica-
tion of the technique is thought prospective for structural homogenization. Further with the GTM, the
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Fig. 19. Pure bending mode.

3-D anisotropic elasticity is practiced by the authors on real engineering problems, among very few cases
in the literature. Honeycomb constitutive modeling, after incorporating these concepts, thus has much
more flexibility in the improvement of computational accuracy and expense. It should be noted that
the approach developed in this paper is readily applicable for all general 2-D cellular configurations
and corrugated cores.

2. The adaptation of homogenization theory in periodic plates is introduced and modified by the authors to
include transverse shear deformable plate theory. The homogenization function of transverse shear stiff-
ness is for the first time derived with analytical solution, and along with other stiffness, transverse shear
stiffness is validated with FEA and literature results. It is advised that for general computations the ac-
curate calculations of stiffness follow the formulas (46), (61), (68), (77), (82) derived in this study com-
plemented with the FEA-based equations (91) and (92) and the correction coefficients in Table 7. And a
refined analysis may choose unit cell FEA with specialized code or periodicity modeling technique which
is developed in this paper.

3. The flexural stiffness and stretch stiffness are for the first time distinguished from each other for honey-
comb sandwich structures, by considering their symmetric and anti-symmetric responses. Although the
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impact of this study on sandwich computational modeling needs further evaluations, the careful use of
equivalent core properties is hereby emphasized, which include the sensitivity of Poisson’s ratios.

4. The skin effect plays an important role in all sandwich stiffness for general practical honeycomb sand-
wiches, particularly when the thickness ratio ¢/J is not small. As today’s sandwich computations never
take it into account, there is a strong recommendation to include this effect in refined analysis and to
have further investigations on practical applications. The particular one is of sandwich beams, on which
many tests and investigations are based.

5. Non-linear effect is briefly assessed in this study, and is found negligible in the elastic range. However, a
thorough study is required for more understanding on non-linear behavior and coupling among shear,
stretch, and bending modes. Also the assessment of size and edge effects in cellular modeling can be a
relevant topic, especially for the justification of divergence between theoretic and experimental results.

7. Further study

In this study, the eight elastic tensors of flexural, stretch, and transverse shear of orthotropic honeycomb
sandwich plates have been derived. To complement the present study, the further research on the solutions
of torsional (warping flexural) and in-plane shear stiffness is provided in Qiao and Xu (2002), and a
complete set of stiffness components is therefore available for computational models of orthotropic
sandwich plates.
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